Metamath Proof Explorer


Theorem nvmval2

Description: Value of vector subtraction on a normed complex vector space. (Contributed by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvmval.1 X=BaseSetU
nvmval.2 G=+vU
nvmval.4 S=𝑠OLDU
nvmval.3 M=-vU
Assertion nvmval2 UNrmCVecAXBXAMB=-1SBGA

Proof

Step Hyp Ref Expression
1 nvmval.1 X=BaseSetU
2 nvmval.2 G=+vU
3 nvmval.4 S=𝑠OLDU
4 nvmval.3 M=-vU
5 1 2 3 4 nvmval UNrmCVecAXBXAMB=AG-1SB
6 neg1cn 1
7 1 3 nvscl UNrmCVec1BX-1SBX
8 6 7 mp3an2 UNrmCVecBX-1SBX
9 8 3adant2 UNrmCVecAXBX-1SBX
10 1 2 nvcom UNrmCVecAX-1SBXAG-1SB=-1SBGA
11 9 10 syld3an3 UNrmCVecAXBXAG-1SB=-1SBGA
12 5 11 eqtrd UNrmCVecAXBXAMB=-1SBGA