Metamath Proof Explorer


Theorem nvnd

Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of Kreyszig p. 63. (Contributed by NM, 4-Dec-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvnd.1 X=BaseSetU
nvnd.5 Z=0vecU
nvnd.6 N=normCVU
nvnd.8 D=IndMetU
Assertion nvnd UNrmCVecAXNA=ADZ

Proof

Step Hyp Ref Expression
1 nvnd.1 X=BaseSetU
2 nvnd.5 Z=0vecU
3 nvnd.6 N=normCVU
4 nvnd.8 D=IndMetU
5 1 2 nvzcl UNrmCVecZX
6 5 adantr UNrmCVecAXZX
7 eqid -vU=-vU
8 1 7 3 4 imsdval UNrmCVecAXZXADZ=NA-vUZ
9 6 8 mpd3an3 UNrmCVecAXADZ=NA-vUZ
10 eqid +vU=+vU
11 eqid 𝑠OLDU=𝑠OLDU
12 1 10 11 7 nvmval UNrmCVecAXZXA-vUZ=A+vU-1𝑠OLDUZ
13 6 12 mpd3an3 UNrmCVecAXA-vUZ=A+vU-1𝑠OLDUZ
14 neg1cn 1
15 11 2 nvsz UNrmCVec1-1𝑠OLDUZ=Z
16 14 15 mpan2 UNrmCVec-1𝑠OLDUZ=Z
17 16 oveq2d UNrmCVecA+vU-1𝑠OLDUZ=A+vUZ
18 17 adantr UNrmCVecAXA+vU-1𝑠OLDUZ=A+vUZ
19 1 10 2 nv0rid UNrmCVecAXA+vUZ=A
20 13 18 19 3eqtrd UNrmCVecAXA-vUZ=A
21 20 fveq2d UNrmCVecAXNA-vUZ=NA
22 9 21 eqtr2d UNrmCVecAXNA=ADZ