Metamath Proof Explorer


Theorem nvsge0

Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses nvs.1 X=BaseSetU
nvs.4 S=𝑠OLDU
nvs.6 N=normCVU
Assertion nvsge0 UNrmCVecA0ABXNASB=ANB

Proof

Step Hyp Ref Expression
1 nvs.1 X=BaseSetU
2 nvs.4 S=𝑠OLDU
3 nvs.6 N=normCVU
4 recn AA
5 4 adantr A0AA
6 1 2 3 nvs UNrmCVecABXNASB=ANB
7 5 6 syl3an2 UNrmCVecA0ABXNASB=ANB
8 absid A0AA=A
9 8 3ad2ant2 UNrmCVecA0ABXA=A
10 9 oveq1d UNrmCVecA0ABXANB=ANB
11 7 10 eqtrd UNrmCVecA0ABXNASB=ANB