Metamath Proof Explorer


Theorem nvz0

Description: The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses nvz0.5 Z=0vecU
nvz0.6 N=normCVU
Assertion nvz0 UNrmCVecNZ=0

Proof

Step Hyp Ref Expression
1 nvz0.5 Z=0vecU
2 nvz0.6 N=normCVU
3 eqid BaseSetU=BaseSetU
4 3 1 nvzcl UNrmCVecZBaseSetU
5 0re 0
6 0le0 00
7 5 6 pm3.2i 000
8 eqid 𝑠OLDU=𝑠OLDU
9 3 8 2 nvsge0 UNrmCVec000ZBaseSetUN0𝑠OLDUZ=0NZ
10 7 9 mp3an2 UNrmCVecZBaseSetUN0𝑠OLDUZ=0NZ
11 4 10 mpdan UNrmCVecN0𝑠OLDUZ=0NZ
12 3 8 1 nv0 UNrmCVecZBaseSetU0𝑠OLDUZ=Z
13 4 12 mpdan UNrmCVec0𝑠OLDUZ=Z
14 13 fveq2d UNrmCVecN0𝑠OLDUZ=NZ
15 3 2 nvcl UNrmCVecZBaseSetUNZ
16 15 recnd UNrmCVecZBaseSetUNZ
17 4 16 mpdan UNrmCVecNZ
18 17 mul02d UNrmCVec0NZ=0
19 11 14 18 3eqtr3d UNrmCVecNZ=0