Metamath Proof Explorer


Theorem o1lo12

Description: A lower bounded real function is eventually bounded iff it is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1lo1.1 φ x A B
o1lo12.2 φ M
o1lo12.3 φ x A M B
Assertion o1lo12 φ x A B 𝑂1 x A B 𝑂1

Proof

Step Hyp Ref Expression
1 o1lo1.1 φ x A B
2 o1lo12.2 φ M
3 o1lo12.3 φ x A M B
4 o1dm x A B 𝑂1 dom x A B
5 4 a1i φ x A B 𝑂1 dom x A B
6 lo1dm x A B 𝑂1 dom x A B
7 6 a1i φ x A B 𝑂1 dom x A B
8 1 ralrimiva φ x A B
9 dmmptg x A B dom x A B = A
10 8 9 syl φ dom x A B = A
11 10 sseq1d φ dom x A B A
12 simpr φ A A
13 1 renegcld φ x A B
14 13 adantlr φ A x A B
15 2 adantr φ A M
16 15 renegcld φ A M
17 2 adantr φ x A M
18 17 1 lenegd φ x A M B B M
19 3 18 mpbid φ x A B M
20 19 ad2ant2r φ A x A M x B M
21 12 14 15 16 20 ello1d φ A x A B 𝑂1
22 1 o1lo1 φ x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
23 22 rbaibd φ x A B 𝑂1 x A B 𝑂1 x A B 𝑂1
24 21 23 syldan φ A x A B 𝑂1 x A B 𝑂1
25 24 ex φ A x A B 𝑂1 x A B 𝑂1
26 11 25 sylbid φ dom x A B x A B 𝑂1 x A B 𝑂1
27 5 7 26 pm5.21ndd φ x A B 𝑂1 x A B 𝑂1