Metamath Proof Explorer


Theorem oaordnr

Description: When the same ordinal is added on the right, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of Schloeder p. 8. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion oaordnr aOnbOncOn¬aba+𝑜cb+𝑜c

Proof

Step Hyp Ref Expression
1 oaordnrex ¬1𝑜+𝑜ω1𝑜+𝑜ω
2 0elon On
3 1on 1𝑜On
4 omelon ωOn
5 oveq2 c=ω+𝑜c=+𝑜ω
6 oveq2 c=ω1𝑜+𝑜c=1𝑜+𝑜ω
7 5 6 eleq12d c=ω+𝑜c1𝑜+𝑜c+𝑜ω1𝑜+𝑜ω
8 7 bibi2d c=ω1𝑜+𝑜c1𝑜+𝑜c1𝑜+𝑜ω1𝑜+𝑜ω
9 8 notbid c=ω¬1𝑜+𝑜c1𝑜+𝑜c¬1𝑜+𝑜ω1𝑜+𝑜ω
10 9 rspcev ωOn¬1𝑜+𝑜ω1𝑜+𝑜ωcOn¬1𝑜+𝑜c1𝑜+𝑜c
11 4 10 mpan ¬1𝑜+𝑜ω1𝑜+𝑜ωcOn¬1𝑜+𝑜c1𝑜+𝑜c
12 eleq2 b=1𝑜b1𝑜
13 oveq1 b=1𝑜b+𝑜c=1𝑜+𝑜c
14 13 eleq2d b=1𝑜+𝑜cb+𝑜c+𝑜c1𝑜+𝑜c
15 12 14 bibi12d b=1𝑜b+𝑜cb+𝑜c1𝑜+𝑜c1𝑜+𝑜c
16 15 notbid b=1𝑜¬b+𝑜cb+𝑜c¬1𝑜+𝑜c1𝑜+𝑜c
17 16 rexbidv b=1𝑜cOn¬b+𝑜cb+𝑜ccOn¬1𝑜+𝑜c1𝑜+𝑜c
18 17 rspcev 1𝑜OncOn¬1𝑜+𝑜c1𝑜+𝑜cbOncOn¬b+𝑜cb+𝑜c
19 3 11 18 sylancr ¬1𝑜+𝑜ω1𝑜+𝑜ωbOncOn¬b+𝑜cb+𝑜c
20 eleq1 a=abb
21 oveq1 a=a+𝑜c=+𝑜c
22 21 eleq1d a=a+𝑜cb+𝑜c+𝑜cb+𝑜c
23 20 22 bibi12d a=aba+𝑜cb+𝑜cb+𝑜cb+𝑜c
24 23 notbid a=¬aba+𝑜cb+𝑜c¬b+𝑜cb+𝑜c
25 24 rexbidv a=cOn¬aba+𝑜cb+𝑜ccOn¬b+𝑜cb+𝑜c
26 25 rexbidv a=bOncOn¬aba+𝑜cb+𝑜cbOncOn¬b+𝑜cb+𝑜c
27 26 rspcev OnbOncOn¬b+𝑜cb+𝑜caOnbOncOn¬aba+𝑜cb+𝑜c
28 2 19 27 sylancr ¬1𝑜+𝑜ω1𝑜+𝑜ωaOnbOncOn¬aba+𝑜cb+𝑜c
29 1 28 ax-mp aOnbOncOn¬aba+𝑜cb+𝑜c