Metamath Proof Explorer


Theorem oaun2

Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun2 AOnBOnA+𝑜B=x|aAx=ay|bBy=A+𝑜b

Proof

Step Hyp Ref Expression
1 oacl AOnBOnA+𝑜BOn
2 1 difexd AOnBOnA+𝑜BAV
3 uniprg AOnA+𝑜BAVAA+𝑜BA=AA+𝑜BA
4 2 3 syldan AOnBOnAA+𝑜BA=AA+𝑜BA
5 rp-abid A=x|aAx=a
6 5 a1i AOnBOnA=x|aAx=a
7 oadif1 AOnBOnA+𝑜BA=y|bBy=A+𝑜b
8 6 7 preq12d AOnBOnAA+𝑜BA=x|aAx=ay|bBy=A+𝑜b
9 8 unieqd AOnBOnAA+𝑜BA=x|aAx=ay|bBy=A+𝑜b
10 undif2 AA+𝑜BA=AA+𝑜B
11 oaword1 AOnBOnAA+𝑜B
12 ssequn1 AA+𝑜BAA+𝑜B=A+𝑜B
13 11 12 sylib AOnBOnAA+𝑜B=A+𝑜B
14 10 13 eqtrid AOnBOnAA+𝑜BA=A+𝑜B
15 4 9 14 3eqtr3rd AOnBOnA+𝑜B=x|aAx=ay|bBy=A+𝑜b