Metamath Proof Explorer


Theorem ocvlsp

Description: The orthocomplement of a linear span. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvlsp.v V=BaseW
ocvlsp.o ˙=ocvW
ocvlsp.n N=LSpanW
Assertion ocvlsp WPreHilSV˙NS=˙S

Proof

Step Hyp Ref Expression
1 ocvlsp.v V=BaseW
2 ocvlsp.o ˙=ocvW
3 ocvlsp.n N=LSpanW
4 phllmod WPreHilWLMod
5 1 3 lspssid WLModSVSNS
6 4 5 sylan WPreHilSVSNS
7 2 ocv2ss SNS˙NS˙S
8 6 7 syl WPreHilSV˙NS˙S
9 1 2 ocvss ˙SV
10 9 a1i WPreHilSV˙SV
11 1 2 ocvocv WPreHil˙SV˙S˙˙˙S
12 10 11 syldan WPreHilSV˙S˙˙˙S
13 4 adantr WPreHilSVWLMod
14 eqid LSubSpW=LSubSpW
15 1 2 14 ocvlss WPreHil˙SV˙˙SLSubSpW
16 10 15 syldan WPreHilSV˙˙SLSubSpW
17 1 2 ocvocv WPreHilSVS˙˙S
18 14 3 lspssp WLMod˙˙SLSubSpWS˙˙SNS˙˙S
19 13 16 17 18 syl3anc WPreHilSVNS˙˙S
20 2 ocv2ss NS˙˙S˙˙˙S˙NS
21 19 20 syl WPreHilSV˙˙˙S˙NS
22 12 21 sstrd WPreHilSV˙S˙NS
23 8 22 eqssd WPreHilSV˙NS=˙S