Metamath Proof Explorer


Theorem odd2np1ALTV

Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion odd2np1ALTV NNOddn2n+1=N

Proof

Step Hyp Ref Expression
1 ibar NnN=2n+1NnN=2n+1
2 eqcom 2n+1=NN=2n+1
3 2 a1i N2n+1=NN=2n+1
4 3 rexbidv Nn2n+1=NnN=2n+1
5 eqeq1 z=Nz=2n+1N=2n+1
6 5 rexbidv z=Nnz=2n+1nN=2n+1
7 dfodd6 Odd=z|nz=2n+1
8 6 7 elrab2 NOddNnN=2n+1
9 8 a1i NNOddNnN=2n+1
10 1 4 9 3bitr4rd NNOddn2n+1=N