Metamath Proof Explorer


Theorem oddpwp1fsum

Description: An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021)

Ref Expression
Hypotheses pwp1fsum.a φA
pwp1fsum.n φN
oddpwp1fsum.n φ¬2N
Assertion oddpwp1fsum φAN+1=A+1k=0N11kAk

Proof

Step Hyp Ref Expression
1 pwp1fsum.a φA
2 pwp1fsum.n φN
3 oddpwp1fsum.n φ¬2N
4 2 nnzd φN
5 oddm1even N¬2N2N1
6 4 5 syl φ¬2N2N1
7 3 6 mpbid φ2N1
8 m1expe 2N11N1=1
9 7 8 syl φ1N1=1
10 9 oveq1d φ1N1AN=1AN
11 10 oveq1d φ1N1AN+1=1AN+1
12 1 2 pwp1fsum φ1N1AN+1=A+1k=0N11kAk
13 2 nnnn0d φN0
14 1 13 expcld φAN
15 14 mullidd φ1AN=AN
16 15 oveq1d φ1AN+1=AN+1
17 11 12 16 3eqtr3rd φAN+1=A+1k=0N11kAk