Metamath Proof Explorer


Theorem odval

Description: Second substitution for the group order definition. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 5-Sep-2015) (Revised by AV, 5-Oct-2020)

Ref Expression
Hypotheses odval.1 X = Base G
odval.2 · ˙ = G
odval.3 0 ˙ = 0 G
odval.4 O = od G
odval.i I = y | y · ˙ A = 0 ˙
Assertion odval A X O A = if I = 0 sup I <

Proof

Step Hyp Ref Expression
1 odval.1 X = Base G
2 odval.2 · ˙ = G
3 odval.3 0 ˙ = 0 G
4 odval.4 O = od G
5 odval.i I = y | y · ˙ A = 0 ˙
6 oveq2 x = A y · ˙ x = y · ˙ A
7 6 eqeq1d x = A y · ˙ x = 0 ˙ y · ˙ A = 0 ˙
8 7 rabbidv x = A y | y · ˙ x = 0 ˙ = y | y · ˙ A = 0 ˙
9 8 5 eqtr4di x = A y | y · ˙ x = 0 ˙ = I
10 9 csbeq1d x = A y | y · ˙ x = 0 ˙ / i if i = 0 sup i < = I / i if i = 0 sup i <
11 nnex V
12 5 11 rabex2 I V
13 eqeq1 i = I i = I =
14 infeq1 i = I sup i < = sup I <
15 13 14 ifbieq2d i = I if i = 0 sup i < = if I = 0 sup I <
16 12 15 csbie I / i if i = 0 sup i < = if I = 0 sup I <
17 10 16 eqtrdi x = A y | y · ˙ x = 0 ˙ / i if i = 0 sup i < = if I = 0 sup I <
18 1 2 3 4 odfval O = x X y | y · ˙ x = 0 ˙ / i if i = 0 sup i <
19 c0ex 0 V
20 ltso < Or
21 20 infex sup I < V
22 19 21 ifex if I = 0 sup I < V
23 17 18 22 fvmpt A X O A = if I = 0 sup I <