Metamath Proof Explorer


Theorem odval2

Description: A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion odval2 GGrpAXOA=ιx0|y0xyy·˙A=0˙

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 1 2 odcl AXOA0
6 5 adantl GGrpAXOA0
7 1 2 3 4 odeq GGrpAXx0x=OAy0xyy·˙A=0˙
8 7 3expa GGrpAXx0x=OAy0xyy·˙A=0˙
9 8 bicomd GGrpAXx0y0xyy·˙A=0˙x=OA
10 6 9 riota5 GGrpAXιx0|y0xyy·˙A=0˙=OA
11 10 eqcomd GGrpAXOA=ιx0|y0xyy·˙A=0˙