Metamath Proof Explorer


Theorem ofdivcan4

Description: Function analogue of divcan4 . (Contributed by Steve Rodriguez, 4-Nov-2015)

Ref Expression
Assertion ofdivcan4 A V F : A G : A 0 F × f G ÷ f G = F

Proof

Step Hyp Ref Expression
1 simp1 A V F : A G : A 0 A V
2 simp2 A V F : A G : A 0 F : A
3 2 ffnd A V F : A G : A 0 F Fn A
4 simp3 A V F : A G : A 0 G : A 0
5 4 ffnd A V F : A G : A 0 G Fn A
6 inidm A A = A
7 3 5 1 1 6 offn A V F : A G : A 0 F × f G Fn A
8 eqidd A V F : A G : A 0 x A F x = F x
9 eqidd A V F : A G : A 0 x A G x = G x
10 3 5 1 1 6 8 9 ofval A V F : A G : A 0 x A F × f G x = F x G x
11 ffvelrn F : A x A F x
12 2 11 sylan A V F : A G : A 0 x A F x
13 ffvelrn G : A 0 x A G x 0
14 eldifsn G x 0 G x G x 0
15 13 14 sylib G : A 0 x A G x G x 0
16 4 15 sylan A V F : A G : A 0 x A G x G x 0
17 divcan4 F x G x G x 0 F x G x G x = F x
18 17 3expb F x G x G x 0 F x G x G x = F x
19 12 16 18 syl2anc A V F : A G : A 0 x A F x G x G x = F x
20 1 7 5 3 10 9 19 offveq A V F : A G : A 0 F × f G ÷ f G = F