Metamath Proof Explorer


Theorem offres

Description: Pointwise combination commutes with restriction. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion offres FVGWFRfGD=FDRfGD

Proof

Step Hyp Ref Expression
1 elinel2 xdomFdomGDxD
2 fvres xDFDx=Fx
3 fvres xDGDx=Gx
4 2 3 oveq12d xDFDxRGDx=FxRGx
5 1 4 syl xdomFdomGDFDxRGDx=FxRGx
6 5 mpteq2ia xdomFdomGDFDxRGDx=xdomFdomGDFxRGx
7 inindi DdomFdomG=DdomFDdomG
8 incom domFdomGD=DdomFdomG
9 dmres domFD=DdomF
10 dmres domGD=DdomG
11 9 10 ineq12i domFDdomGD=DdomFDdomG
12 7 8 11 3eqtr4ri domFDdomGD=domFdomGD
13 12 mpteq1i xdomFDdomGDFDxRGDx=xdomFdomGDFDxRGDx
14 resmpt3 xdomFdomGFxRGxD=xdomFdomGDFxRGx
15 6 13 14 3eqtr4ri xdomFdomGFxRGxD=xdomFDdomGDFDxRGDx
16 offval3 FVGWFRfG=xdomFdomGFxRGx
17 16 reseq1d FVGWFRfGD=xdomFdomGFxRGxD
18 resexg FVFDV
19 resexg GWGDV
20 offval3 FDVGDVFDRfGD=xdomFDdomGDFDxRGDx
21 18 19 20 syl2an FVGWFDRfGD=xdomFDdomGDFDxRGDx
22 15 17 21 3eqtr4a FVGWFRfGD=FDRfGD