Metamath Proof Explorer


Theorem offval22

Description: The function operation expressed as a mapping, variation of offval2 . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses offval22.a φAV
offval22.b φBW
offval22.c φxAyBCX
offval22.d φxAyBDY
offval22.f φF=xA,yBC
offval22.g φG=xA,yBD
Assertion offval22 φFRfG=xA,yBCRD

Proof

Step Hyp Ref Expression
1 offval22.a φAV
2 offval22.b φBW
3 offval22.c φxAyBCX
4 offval22.d φxAyBDY
5 offval22.f φF=xA,yBC
6 offval22.g φG=xA,yBD
7 1 2 xpexd φA×BV
8 xp1st zA×B1stzA
9 xp2nd zA×B2ndzB
10 8 9 jca zA×B1stzA2ndzB
11 fvex 2ndzV
12 fvex 1stzV
13 nfcv _y2ndz
14 nfcv _x2ndz
15 nfcv _x1stz
16 nfv yφxA2ndzB
17 nfcsb1v _y2ndz/yC
18 17 nfel1 y2ndz/yCV
19 16 18 nfim yφxA2ndzB2ndz/yCV
20 nfv xφ1stzA2ndzB
21 nfcsb1v _x1stz/x2ndz/yC
22 21 nfel1 x1stz/x2ndz/yCV
23 20 22 nfim xφ1stzA2ndzB1stz/x2ndz/yCV
24 eleq1 y=2ndzyB2ndzB
25 24 3anbi3d y=2ndzφxAyBφxA2ndzB
26 csbeq1a y=2ndzC=2ndz/yC
27 26 eleq1d y=2ndzCV2ndz/yCV
28 25 27 imbi12d y=2ndzφxAyBCVφxA2ndzB2ndz/yCV
29 eleq1 x=1stzxA1stzA
30 29 3anbi2d x=1stzφxA2ndzBφ1stzA2ndzB
31 csbeq1a x=1stz2ndz/yC=1stz/x2ndz/yC
32 31 eleq1d x=1stz2ndz/yCV1stz/x2ndz/yCV
33 30 32 imbi12d x=1stzφxA2ndzB2ndz/yCVφ1stzA2ndzB1stz/x2ndz/yCV
34 3 elexd φxAyBCV
35 13 14 15 19 23 28 33 34 vtocl2gf 2ndzV1stzVφ1stzA2ndzB1stz/x2ndz/yCV
36 11 12 35 mp2an φ1stzA2ndzB1stz/x2ndz/yCV
37 36 3expb φ1stzA2ndzB1stz/x2ndz/yCV
38 10 37 sylan2 φzA×B1stz/x2ndz/yCV
39 nfcsb1v _y2ndz/yD
40 39 nfel1 y2ndz/yDV
41 16 40 nfim yφxA2ndzB2ndz/yDV
42 nfcsb1v _x1stz/x2ndz/yD
43 42 nfel1 x1stz/x2ndz/yDV
44 20 43 nfim xφ1stzA2ndzB1stz/x2ndz/yDV
45 csbeq1a y=2ndzD=2ndz/yD
46 45 eleq1d y=2ndzDV2ndz/yDV
47 25 46 imbi12d y=2ndzφxAyBDVφxA2ndzB2ndz/yDV
48 csbeq1a x=1stz2ndz/yD=1stz/x2ndz/yD
49 48 eleq1d x=1stz2ndz/yDV1stz/x2ndz/yDV
50 30 49 imbi12d x=1stzφxA2ndzB2ndz/yDVφ1stzA2ndzB1stz/x2ndz/yDV
51 4 elexd φxAyBDV
52 13 14 15 41 44 47 50 51 vtocl2gf 2ndzV1stzVφ1stzA2ndzB1stz/x2ndz/yDV
53 11 12 52 mp2an φ1stzA2ndzB1stz/x2ndz/yDV
54 53 3expb φ1stzA2ndzB1stz/x2ndz/yDV
55 10 54 sylan2 φzA×B1stz/x2ndz/yDV
56 mpompts xA,yBC=zA×B1stz/x2ndz/yC
57 5 56 eqtrdi φF=zA×B1stz/x2ndz/yC
58 mpompts xA,yBD=zA×B1stz/x2ndz/yD
59 6 58 eqtrdi φG=zA×B1stz/x2ndz/yD
60 7 38 55 57 59 offval2 φFRfG=zA×B1stz/x2ndz/yCR1stz/x2ndz/yD
61 csbov12g 2ndzV2ndz/yCRD=2ndz/yCR2ndz/yD
62 61 csbeq2dv 2ndzV1stz/x2ndz/yCRD=1stz/x2ndz/yCR2ndz/yD
63 11 62 ax-mp 1stz/x2ndz/yCRD=1stz/x2ndz/yCR2ndz/yD
64 csbov12g 1stzV1stz/x2ndz/yCR2ndz/yD=1stz/x2ndz/yCR1stz/x2ndz/yD
65 12 64 ax-mp 1stz/x2ndz/yCR2ndz/yD=1stz/x2ndz/yCR1stz/x2ndz/yD
66 63 65 eqtr2i 1stz/x2ndz/yCR1stz/x2ndz/yD=1stz/x2ndz/yCRD
67 66 mpteq2i zA×B1stz/x2ndz/yCR1stz/x2ndz/yD=zA×B1stz/x2ndz/yCRD
68 mpompts xA,yBCRD=zA×B1stz/x2ndz/yCRD
69 67 68 eqtr4i zA×B1stz/x2ndz/yCR1stz/x2ndz/yD=xA,yBCRD
70 60 69 eqtrdi φFRfG=xA,yBCRD