Metamath Proof Explorer


Theorem ofmul12

Description: Function analogue of mul12 . (Contributed by Steve Rodriguez, 13-Nov-2015)

Ref Expression
Assertion ofmul12 AVF:AG:AH:AF×fG×fH=G×fF×fH

Proof

Step Hyp Ref Expression
1 simpll AVF:AG:AH:AAV
2 simplr AVF:AG:AH:AF:A
3 2 ffnd AVF:AG:AH:AFFnA
4 simprl AVF:AG:AH:AG:A
5 4 ffnd AVF:AG:AH:AGFnA
6 simprr AVF:AG:AH:AH:A
7 6 ffnd AVF:AG:AH:AHFnA
8 inidm AA=A
9 5 7 1 1 8 offn AVF:AG:AH:AG×fHFnA
10 3 7 1 1 8 offn AVF:AG:AH:AF×fHFnA
11 5 10 1 1 8 offn AVF:AG:AH:AG×fF×fHFnA
12 eqidd AVF:AG:AH:AxAFx=Fx
13 eqidd AVF:AG:AH:AxAGx=Gx
14 eqidd AVF:AG:AH:AxAHx=Hx
15 5 7 1 1 8 13 14 ofval AVF:AG:AH:AxAG×fHx=GxHx
16 2 ffvelcdmda AVF:AG:AH:AxAFx
17 4 ffvelcdmda AVF:AG:AH:AxAGx
18 6 ffvelcdmda AVF:AG:AH:AxAHx
19 16 17 18 mul12d AVF:AG:AH:AxAFxGxHx=GxFxHx
20 3 7 1 1 8 12 14 ofval AVF:AG:AH:AxAF×fHx=FxHx
21 5 10 1 1 8 13 20 ofval AVF:AG:AH:AxAG×fF×fHx=GxFxHx
22 19 21 eqtr4d AVF:AG:AH:AxAFxGxHx=G×fF×fHx
23 1 3 9 11 12 15 22 offveq AVF:AG:AH:AF×fG×fH=G×fF×fH