Metamath Proof Explorer


Theorem ofreq

Description: Equality theorem for function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Assertion ofreq R=SrR=rS

Proof

Step Hyp Ref Expression
1 breq R=SfxRgxfxSgx
2 1 ralbidv R=SxdomfdomgfxRgxxdomfdomgfxSgx
3 2 opabbidv R=Sfg|xdomfdomgfxRgx=fg|xdomfdomgfxSgx
4 df-ofr rR=fg|xdomfdomgfxRgx
5 df-ofr rS=fg|xdomfdomgfxSgx
6 3 4 5 3eqtr4g R=SrR=rS