Metamath Proof Explorer


Theorem ofrfval

Description: Value of a relation applied to two functions. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses offval.1 φFFnA
offval.2 φGFnB
offval.3 φAV
offval.4 φBW
offval.5 AB=S
offval.6 φxAFx=C
offval.7 φxBGx=D
Assertion ofrfval φFRfGxSCRD

Proof

Step Hyp Ref Expression
1 offval.1 φFFnA
2 offval.2 φGFnB
3 offval.3 φAV
4 offval.4 φBW
5 offval.5 AB=S
6 offval.6 φxAFx=C
7 offval.7 φxBGx=D
8 1 3 fnexd φFV
9 2 4 fnexd φGV
10 1 2 8 9 5 6 7 ofrfvalg φFRfGxSCRD