Metamath Proof Explorer


Theorem oicl

Description: The order type of the well-order R on A is an ordinal. (Contributed by Mario Carneiro, 23-May-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypothesis oicl.1 F=OrdIsoRA
Assertion oicl OrddomF

Proof

Step Hyp Ref Expression
1 oicl.1 F=OrdIsoRA
2 eqid recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
3 eqid wA|jranhjRw=wA|jranhjRw
4 eqid hVιvwA|jranhjRw|uwA|jranhjRw¬uRv=hVιvwA|jranhjRw|uwA|jranhjRw¬uRv
5 2 3 4 ordtypecbv recsfVιsyA|iranfiRy|ryA|iranfiRy¬rRs=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
6 eqid xOn|tAzrecsfVιsyA|iranfiRy|ryA|iranfiRy¬rRsxzRt=xOn|tAzrecsfVιsyA|iranfiRy|ryA|iranfiRy¬rRsxzRt
7 simpl RWeARSeARWeA
8 simpr RWeARSeARSeA
9 5 3 4 6 1 7 8 ordtypelem5 RWeARSeAOrddomFF:domFA
10 9 simpld RWeARSeAOrddomF
11 ord0 Ord
12 1 oi0 ¬RWeARSeAF=
13 12 dmeqd ¬RWeARSeAdomF=dom
14 dm0 dom=
15 13 14 eqtrdi ¬RWeARSeAdomF=
16 ordeq domF=OrddomFOrd
17 15 16 syl ¬RWeARSeAOrddomFOrd
18 11 17 mpbiri ¬RWeARSeAOrddomF
19 10 18 pm2.61i OrddomF