Metamath Proof Explorer


Theorem oldbdayim

Description: If X is in the old set for A , then the birthday of X is less than A . (Contributed by Scott Fenton, 10-Aug-2024)

Ref Expression
Assertion oldbdayim XOldAbdayXA

Proof

Step Hyp Ref Expression
1 elfvdm XOldAAdomOld
2 oldf Old:On𝒫No
3 2 fdmi domOld=On
4 1 3 eleqtrdi XOldAAOn
5 elold Could not format ( A e. On -> ( X e. ( _Old ` A ) <-> E. b e. A X e. ( _Made ` b ) ) ) : No typesetting found for |- ( A e. On -> ( X e. ( _Old ` A ) <-> E. b e. A X e. ( _Made ` b ) ) ) with typecode |-
6 madebdayim Could not format ( X e. ( _Made ` b ) -> ( bday ` X ) C_ b ) : No typesetting found for |- ( X e. ( _Made ` b ) -> ( bday ` X ) C_ b ) with typecode |-
7 6 ad2antll Could not format ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> ( bday ` X ) C_ b ) : No typesetting found for |- ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> ( bday ` X ) C_ b ) with typecode |-
8 simprl Could not format ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> b e. A ) : No typesetting found for |- ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> b e. A ) with typecode |-
9 bdayelon bdayXOn
10 ontr2 bdayXOnAOnbdayXbbAbdayXA
11 9 10 mpan AOnbdayXbbAbdayXA
12 11 adantr Could not format ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) ) : No typesetting found for |- ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> ( ( ( bday ` X ) C_ b /\ b e. A ) -> ( bday ` X ) e. A ) ) with typecode |-
13 7 8 12 mp2and Could not format ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> ( bday ` X ) e. A ) : No typesetting found for |- ( ( A e. On /\ ( b e. A /\ X e. ( _Made ` b ) ) ) -> ( bday ` X ) e. A ) with typecode |-
14 13 rexlimdvaa Could not format ( A e. On -> ( E. b e. A X e. ( _Made ` b ) -> ( bday ` X ) e. A ) ) : No typesetting found for |- ( A e. On -> ( E. b e. A X e. ( _Made ` b ) -> ( bday ` X ) e. A ) ) with typecode |-
15 5 14 sylbid AOnXOldAbdayXA
16 4 15 mpcom XOldAbdayXA