Database
BASIC TOPOLOGY
Metric spaces
The fundamental group
om1bas
Next ⟩
om1elbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
om1bas
Description:
The base set of the loop space.
(Contributed by
Mario Carneiro
, 10-Jul-2015)
Ref
Expression
Hypotheses
om1bas.o
⊢
O
=
J
Ω
1
Y
om1bas.j
⊢
φ
→
J
∈
TopOn
⁡
X
om1bas.y
⊢
φ
→
Y
∈
X
om1bas.b
⊢
φ
→
B
=
Base
O
Assertion
om1bas
⊢
φ
→
B
=
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
Proof
Step
Hyp
Ref
Expression
1
om1bas.o
⊢
O
=
J
Ω
1
Y
2
om1bas.j
⊢
φ
→
J
∈
TopOn
⁡
X
3
om1bas.y
⊢
φ
→
Y
∈
X
4
om1bas.b
⊢
φ
→
B
=
Base
O
5
eqidd
⊢
φ
→
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
=
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
6
eqidd
⊢
φ
→
*
𝑝
⁡
J
=
*
𝑝
⁡
J
7
eqidd
⊢
φ
→
J
^
ko
II
=
J
^
ko
II
8
1
5
6
7
2
3
om1val
⊢
φ
→
O
=
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
9
8
fveq2d
⊢
φ
→
Base
O
=
Base
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
10
4
9
eqtrd
⊢
φ
→
B
=
Base
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
11
ovex
⊢
II
Cn
J
∈
V
12
11
rabex
⊢
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
∈
V
13
eqid
⊢
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
=
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
14
13
topgrpbas
⊢
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
∈
V
→
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
=
Base
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
15
12
14
ax-mp
⊢
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
=
Base
Base
ndx
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y
+
ndx
*
𝑝
⁡
J
TopSet
⁡
ndx
J
^
ko
II
16
10
15
eqtr4di
⊢
φ
→
B
=
f
∈
II
Cn
J
|
f
⁡
0
=
Y
∧
f
⁡
1
=
Y