Metamath Proof Explorer


Theorem ome0

Description: The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis ome0.1 φOOutMeas
Assertion ome0 φO=0

Proof

Step Hyp Ref Expression
1 ome0.1 φOOutMeas
2 isome OOutMeasOOutMeasO:domO0+∞domO=𝒫domOO=0x𝒫domOy𝒫xOyOxx𝒫domOxωOxsum^Ox
3 1 2 syl φOOutMeasO:domO0+∞domO=𝒫domOO=0x𝒫domOy𝒫xOyOxx𝒫domOxωOxsum^Ox
4 1 3 mpbid φO:domO0+∞domO=𝒫domOO=0x𝒫domOy𝒫xOyOxx𝒫domOxωOxsum^Ox
5 4 simplld φO:domO0+∞domO=𝒫domOO=0
6 5 simprd φO=0