Metamath Proof Explorer


Theorem omeoALTV

Description: The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by AV, 20-Jun-2020)

Ref Expression
Assertion omeoALTV AOddBEvenABOdd

Proof

Step Hyp Ref Expression
1 oddz AOddA
2 1 zcnd AOddA
3 evenz BEvenB
4 3 zcnd BEvenB
5 negsub ABA+B=AB
6 2 4 5 syl2an AOddBEvenA+B=AB
7 enege BEvenBEven
8 opeoALTV AOddBEvenA+BOdd
9 7 8 sylan2 AOddBEvenA+BOdd
10 6 9 eqeltrrd AOddBEvenABOdd