Metamath Proof Explorer


Theorem omina

Description: _om is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow _om as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for _om .) (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion omina ωInacc

Proof

Step Hyp Ref Expression
1 peano1 ω
2 1 ne0ii ω
3 cfom cfω=ω
4 nnfi xωxFin
5 pwfi xFin𝒫xFin
6 4 5 sylib xω𝒫xFin
7 isfinite 𝒫xFin𝒫xω
8 6 7 sylib xω𝒫xω
9 8 rgen xω𝒫xω
10 elina ωInaccωcfω=ωxω𝒫xω
11 2 3 9 10 mpbir3an ωInacc