Metamath Proof Explorer


Theorem omssrncard

Description: All natural numbers are cardinals. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion omssrncard ωrancard

Proof

Step Hyp Ref Expression
1 nnon xωxOn
2 onelon xOnyxyOn
3 simpl xOnyxxOn
4 simpr xOnyxyx
5 onelpss yOnxOnyxyxyx
6 5 biimpa yOnxOnyxyxyx
7 2 3 4 6 syl21anc xOnyxyxyx
8 df-pss yxyxyx
9 7 8 sylibr xOnyxyx
10 9 ex xOnyxyx
11 1 10 syl xωyxyx
12 11 imdistani xωyxxωyx
13 php xωyx¬xy
14 12 13 syl xωyx¬xy
15 ensymb xyyx
16 14 15 sylnib xωyx¬yx
17 16 ralrimiva xωyx¬yx
18 elrncard xrancardxOnyx¬yx
19 1 17 18 sylanbrc xωxrancard
20 19 ssriv ωrancard