Metamath Proof Explorer


Theorem omword

Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion omword AOnBOnCOnCABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 omord2 AOnBOnCOnCABC𝑜AC𝑜B
2 3anrot COnAOnBOnAOnBOnCOn
3 omcan COnAOnBOnCC𝑜A=C𝑜BA=B
4 2 3 sylanbr AOnBOnCOnCC𝑜A=C𝑜BA=B
5 4 bicomd AOnBOnCOnCA=BC𝑜A=C𝑜B
6 1 5 orbi12d AOnBOnCOnCABA=BC𝑜AC𝑜BC𝑜A=C𝑜B
7 onsseleq AOnBOnABABA=B
8 7 3adant3 AOnBOnCOnABABA=B
9 8 adantr AOnBOnCOnCABABA=B
10 omcl COnAOnC𝑜AOn
11 omcl COnBOnC𝑜BOn
12 10 11 anim12dan COnAOnBOnC𝑜AOnC𝑜BOn
13 12 ancoms AOnBOnCOnC𝑜AOnC𝑜BOn
14 13 3impa AOnBOnCOnC𝑜AOnC𝑜BOn
15 onsseleq C𝑜AOnC𝑜BOnC𝑜AC𝑜BC𝑜AC𝑜BC𝑜A=C𝑜B
16 14 15 syl AOnBOnCOnC𝑜AC𝑜BC𝑜AC𝑜BC𝑜A=C𝑜B
17 16 adantr AOnBOnCOnCC𝑜AC𝑜BC𝑜AC𝑜BC𝑜A=C𝑜B
18 6 9 17 3bitr4d AOnBOnCOnCABC𝑜AC𝑜B