Metamath Proof Explorer


Theorem omwordi

Description: Weak ordering property of ordinal multiplication. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion omwordi AOnBOnCOnABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 omword AOnBOnCOnCABC𝑜AC𝑜B
2 1 biimpd AOnBOnCOnCABC𝑜AC𝑜B
3 2 ex AOnBOnCOnCABC𝑜AC𝑜B
4 eloni COnOrdC
5 ord0eln0 OrdCCC
6 5 necon2bbid OrdCC=¬C
7 4 6 syl COnC=¬C
8 7 3ad2ant3 AOnBOnCOnC=¬C
9 ssid
10 om0r AOn𝑜A=
11 10 adantr AOnBOn𝑜A=
12 om0r BOn𝑜B=
13 12 adantl AOnBOn𝑜B=
14 11 13 sseq12d AOnBOn𝑜A𝑜B
15 9 14 mpbiri AOnBOn𝑜A𝑜B
16 oveq1 C=C𝑜A=𝑜A
17 oveq1 C=C𝑜B=𝑜B
18 16 17 sseq12d C=C𝑜AC𝑜B𝑜A𝑜B
19 15 18 syl5ibrcom AOnBOnC=C𝑜AC𝑜B
20 19 3adant3 AOnBOnCOnC=C𝑜AC𝑜B
21 8 20 sylbird AOnBOnCOn¬CC𝑜AC𝑜B
22 21 a1dd AOnBOnCOn¬CABC𝑜AC𝑜B
23 3 22 pm2.61d AOnBOnCOnABC𝑜AC𝑜B