Metamath Proof Explorer


Theorem onfin2

Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013)

Ref Expression
Assertion onfin2 ω=OnFin

Proof

Step Hyp Ref Expression
1 nnon xωxOn
2 onfin xOnxFinxω
3 2 biimprcd xωxOnxFin
4 1 3 jcai xωxOnxFin
5 2 biimpa xOnxFinxω
6 4 5 impbii xωxOnxFin
7 elin xOnFinxOnxFin
8 6 7 bitr4i xωxOnFin
9 8 eqriv ω=OnFin