Metamath Proof Explorer


Theorem onfisupcl

Description: Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi . (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onfisupcl AOnAVAFinAAA

Proof

Step Hyp Ref Expression
1 simpll AOnAVAFinAAOn
2 simprl AOnAVAFinAAFin
3 simprr AOnAVAFinAA
4 1 2 3 3jca AOnAVAFinAAOnAFinA
5 ordunifi AOnAFinAAA
6 4 5 syl AOnAVAFinAAA
7 6 ex AOnAVAFinAAA