Metamath Proof Explorer


Theorem onfrALTlem4

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem4 [˙y/x]˙xaax=yaay=

Proof

Step Hyp Ref Expression
1 sbcan [˙y/x]˙xaax=[˙y/x]˙xa[˙y/x]˙ax=
2 sbcel1v [˙y/x]˙xaya
3 vex yV
4 sbceqg yV[˙y/x]˙ax=y/xax=y/x
5 3 4 ax-mp [˙y/x]˙ax=y/xax=y/x
6 csbin y/xax=y/xay/xx
7 csbconstg yVy/xa=a
8 3 7 ax-mp y/xa=a
9 csbvarg yVy/xx=y
10 3 9 ax-mp y/xx=y
11 8 10 ineq12i y/xay/xx=ay
12 6 11 eqtri y/xax=ay
13 csb0 y/x=
14 12 13 eqeq12i y/xax=y/xay=
15 5 14 bitri [˙y/x]˙ax=ay=
16 2 15 anbi12i [˙y/x]˙xa[˙y/x]˙ax=yaay=
17 1 16 bitri [˙y/x]˙xaax=yaay=