Metamath Proof Explorer


Theorem onovuni

Description: A variant of onfununi for operations. (Contributed by Eric Schmidt, 26-May-2009) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses onovuni.1 LimyAFy=xyAFx
onovuni.2 xOnyOnxyAFxAFy
Assertion onovuni STSOnSAFS=xSAFx

Proof

Step Hyp Ref Expression
1 onovuni.1 LimyAFy=xyAFx
2 onovuni.2 xOnyOnxyAFxAFy
3 oveq2 z=yAFz=AFy
4 eqid zVAFz=zVAFz
5 ovex AFyV
6 3 4 5 fvmpt yVzVAFzy=AFy
7 6 elv zVAFzy=AFy
8 oveq2 z=xAFz=AFx
9 ovex AFxV
10 8 4 9 fvmpt xVzVAFzx=AFx
11 10 elv zVAFzx=AFx
12 11 a1i xyzVAFzx=AFx
13 12 iuneq2i xyzVAFzx=xyAFx
14 1 7 13 3eqtr4g LimyzVAFzy=xyzVAFzx
15 2 11 7 3sstr4g xOnyOnxyzVAFzxzVAFzy
16 14 15 onfununi STSOnSzVAFzS=xSzVAFzx
17 uniexg STSV
18 oveq2 z=SAFz=AFS
19 ovex AFSV
20 18 4 19 fvmpt SVzVAFzS=AFS
21 17 20 syl STzVAFzS=AFS
22 21 3ad2ant1 STSOnSzVAFzS=AFS
23 11 a1i xSzVAFzx=AFx
24 23 iuneq2i xSzVAFzx=xSAFx
25 24 a1i STSOnSxSzVAFzx=xSAFx
26 16 22 25 3eqtr3d STSOnSAFS=xSAFx