Metamath Proof Explorer


Theorem onsucf1lem

Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the succesor of. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)

Ref Expression
Assertion onsucf1lem AOn*bOnA=sucb

Proof

Step Hyp Ref Expression
1 onuni AOnAOn
2 onsucuni2 AOnA=sucbsucA=A
3 2 adantlr AOnbOnA=sucbsucA=A
4 simpr AOnbOnA=sucbA=sucb
5 3 4 eqtr2d AOnbOnA=sucbsucb=sucA
6 1 anim1i AOnbOnAOnbOn
7 6 adantr AOnbOnA=sucbAOnbOn
8 7 ancomd AOnbOnA=sucbbOnAOn
9 suc11 bOnAOnsucb=sucAb=A
10 8 9 syl AOnbOnA=sucbsucb=sucAb=A
11 5 10 mpbid AOnbOnA=sucbb=A
12 11 ex AOnbOnA=sucbb=A
13 12 ralrimiva AOnbOnA=sucbb=A
14 eqeq2 c=Ab=cb=A
15 14 imbi2d c=AA=sucbb=cA=sucbb=A
16 15 ralbidv c=AbOnA=sucbb=cbOnA=sucbb=A
17 1 13 16 spcedv AOncbOnA=sucbb=c
18 nfv cA=sucb
19 18 rmo2 *bOnA=sucbcbOnA=sucbb=c
20 17 19 sylibr AOn*bOnA=sucb