Description: For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the succesor of. Lemma 1.17 of Schloeder p. 2. (Contributed by RP, 18-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsucf1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onuni | |
|
2 | onsucuni2 | |
|
3 | 2 | adantlr | |
4 | simpr | |
|
5 | 3 4 | eqtr2d | |
6 | 1 | anim1i | |
7 | 6 | adantr | |
8 | 7 | ancomd | |
9 | suc11 | |
|
10 | 8 9 | syl | |
11 | 5 10 | mpbid | |
12 | 11 | ex | |
13 | 12 | ralrimiva | |
14 | eqeq2 | |
|
15 | 14 | imbi2d | |
16 | 15 | ralbidv | |
17 | 1 13 16 | spcedv | |
18 | nfv | |
|
19 | 18 | rmo2 | |
20 | 17 19 | sylibr | |