Metamath Proof Explorer


Theorem onsucuni3

Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020)

Ref Expression
Assertion onsucuni3 BOnB¬LimBB=sucB

Proof

Step Hyp Ref Expression
1 eloni BOnOrdB
2 1 3ad2ant1 BOnB¬LimBOrdB
3 orduniorsuc OrdBB=BB=sucB
4 2 3 syl BOnB¬LimBB=BB=sucB
5 4 orcomd BOnB¬LimBB=sucBB=B
6 simp2 BOnB¬LimBB
7 df-lim LimBOrdBBB=B
8 7 biimpri OrdBBB=BLimB
9 8 3expb OrdBBB=BLimB
10 9 con3i ¬LimB¬OrdBBB=B
11 10 3ad2ant3 BOnB¬LimB¬OrdBBB=B
12 2 11 mpnanrd BOnB¬LimB¬BB=B
13 6 12 mpnanrd BOnB¬LimB¬B=B
14 orcom B=sucBB=BB=BB=sucB
15 df-or B=BB=sucB¬B=BB=sucB
16 14 15 sylbb B=sucBB=B¬B=BB=sucB
17 5 13 16 sylc BOnB¬LimBB=sucB