Metamath Proof Explorer


Theorem onsupcl3

Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupcl3 AOnAVxOn|yAyxOn

Proof

Step Hyp Ref Expression
1 onuniintrab AOnAVA=xOn|yAyx
2 ssonuni AVAOnAOn
3 2 impcom AOnAVAOn
4 1 3 eqeltrrd AOnAVxOn|yAyxOn