Metamath Proof Explorer


Theorem onsupsucismax

Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of Schloeder p. 5. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupsucismax AOnAVbOnA=sucbAA

Proof

Step Hyp Ref Expression
1 onsupnmax AOn¬AAA=A
2 ssorduni AOnOrdA
3 orduninsuc OrdAA=A¬bOnA=sucb
4 2 3 syl AOnA=A¬bOnA=sucb
5 1 4 sylibd AOn¬AA¬bOnA=sucb
6 5 con4d AOnbOnA=sucbAA
7 6 adantr AOnAVbOnA=sucbAA