| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexnal |
|
| 2 |
|
ralnex |
|
| 3 |
2
|
rexbii |
|
| 4 |
|
ssunib |
|
| 5 |
4
|
notbii |
|
| 6 |
1 3 5
|
3bitr4ri |
|
| 7 |
|
simpll |
|
| 8 |
7
|
sselda |
|
| 9 |
|
simpl |
|
| 10 |
9
|
sselda |
|
| 11 |
10
|
adantr |
|
| 12 |
|
ontri1 |
|
| 13 |
8 11 12
|
syl2anc |
|
| 14 |
13
|
ralbidva |
|
| 15 |
14
|
rexbidva |
|
| 16 |
6 15
|
bitr4id |
|
| 17 |
|
unielid |
|
| 18 |
17
|
a1i |
|
| 19 |
18
|
biimprd |
|
| 20 |
16 19
|
sylbid |
|
| 21 |
20
|
con1d |
|
| 22 |
|
uniss |
|
| 23 |
21 22
|
syl6 |
|
| 24 |
|
ssorduni |
|
| 25 |
|
orduniss |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
biantrud |
|
| 28 |
|
eqss |
|
| 29 |
27 28
|
bitr4di |
|
| 30 |
29
|
adantr |
|
| 31 |
23 30
|
sylibd |
|
| 32 |
31
|
ex |
|
| 33 |
|
unon |
|
| 34 |
33
|
a1i |
|
| 35 |
|
unieq |
|
| 36 |
|
id |
|
| 37 |
34 35 36
|
3eqtr4rd |
|
| 38 |
37
|
a1i13 |
|
| 39 |
|
ordeleqon |
|
| 40 |
24 39
|
sylib |
|
| 41 |
32 38 40
|
mpjaod |
|