Metamath Proof Explorer


Theorem onsupnmax

Description: If the union of a class of ordinals is not the maximum element of that class, then the union is a limit ordinal or empty. But this isn't a biconditional since A could be a non-empty set where a limit ordinal or the empty set happens to be the largest element. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupnmax A On ¬ A A A = A

Proof

Step Hyp Ref Expression
1 rexnal x A ¬ y A x y ¬ x A y A x y
2 ralnex y A ¬ x y ¬ y A x y
3 2 rexbii x A y A ¬ x y x A ¬ y A x y
4 ssunib A A x A y A x y
5 4 notbii ¬ A A ¬ x A y A x y
6 1 3 5 3bitr4ri ¬ A A x A y A ¬ x y
7 simpll A On A On x A A On
8 7 sselda A On A On x A y A y On
9 simpl A On A On A On
10 9 sselda A On A On x A x On
11 10 adantr A On A On x A y A x On
12 ontri1 y On x On y x ¬ x y
13 8 11 12 syl2anc A On A On x A y A y x ¬ x y
14 13 ralbidva A On A On x A y A y x y A ¬ x y
15 14 rexbidva A On A On x A y A y x x A y A ¬ x y
16 6 15 bitr4id A On A On ¬ A A x A y A y x
17 unielid A A x A y A y x
18 17 a1i A On A On A A x A y A y x
19 18 biimprd A On A On x A y A y x A A
20 16 19 sylbid A On A On ¬ A A A A
21 20 con1d A On A On ¬ A A A A
22 uniss A A A A
23 21 22 syl6 A On A On ¬ A A A A
24 ssorduni A On Ord A
25 orduniss Ord A A A
26 24 25 syl A On A A
27 26 biantrud A On A A A A A A
28 eqss A = A A A A A
29 27 28 bitr4di A On A A A = A
30 29 adantr A On A On A A A = A
31 23 30 sylibd A On A On ¬ A A A = A
32 31 ex A On A On ¬ A A A = A
33 unon On = On
34 33 a1i A = On On = On
35 unieq A = On A = On
36 id A = On A = On
37 34 35 36 3eqtr4rd A = On A = A
38 37 a1i13 A On A = On ¬ A A A = A
39 ordeleqon Ord A A On A = On
40 24 39 sylib A On A On A = On
41 32 38 40 mpjaod A On ¬ A A A = A