Step |
Hyp |
Ref |
Expression |
1 |
|
rexnal |
|
2 |
|
ralnex |
|
3 |
2
|
rexbii |
|
4 |
|
ssunib |
|
5 |
4
|
notbii |
|
6 |
1 3 5
|
3bitr4ri |
|
7 |
|
simpll |
|
8 |
7
|
sselda |
|
9 |
|
simpl |
|
10 |
9
|
sselda |
|
11 |
10
|
adantr |
|
12 |
|
ontri1 |
|
13 |
8 11 12
|
syl2anc |
|
14 |
13
|
ralbidva |
|
15 |
14
|
rexbidva |
|
16 |
6 15
|
bitr4id |
|
17 |
|
unielid |
|
18 |
17
|
a1i |
|
19 |
18
|
biimprd |
|
20 |
16 19
|
sylbid |
|
21 |
20
|
con1d |
|
22 |
|
uniss |
|
23 |
21 22
|
syl6 |
|
24 |
|
ssorduni |
|
25 |
|
orduniss |
|
26 |
24 25
|
syl |
|
27 |
26
|
biantrud |
|
28 |
|
eqss |
|
29 |
27 28
|
bitr4di |
|
30 |
29
|
adantr |
|
31 |
23 30
|
sylibd |
|
32 |
31
|
ex |
|
33 |
|
unon |
|
34 |
33
|
a1i |
|
35 |
|
unieq |
|
36 |
|
id |
|
37 |
34 35 36
|
3eqtr4rd |
|
38 |
37
|
a1i13 |
|
39 |
|
ordeleqon |
|
40 |
24 39
|
sylib |
|
41 |
32 38 40
|
mpjaod |
|