Metamath Proof Explorer


Theorem opidon2OLD

Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis opidon2OLD.1 X=ranG
Assertion opidon2OLD GMagmaExIdG:X×XontoX

Proof

Step Hyp Ref Expression
1 opidon2OLD.1 X=ranG
2 eqid domdomG=domdomG
3 2 opidonOLD GMagmaExIdG:domdomG×domdomGontodomdomG
4 forn G:domdomG×domdomGontodomdomGranG=domdomG
5 1 4 eqtr2id G:domdomG×domdomGontodomdomGdomdomG=X
6 xpeq12 domdomG=XdomdomG=XdomdomG×domdomG=X×X
7 6 anidms domdomG=XdomdomG×domdomG=X×X
8 foeq2 domdomG×domdomG=X×XG:domdomG×domdomGontodomdomGG:X×XontodomdomG
9 7 8 syl domdomG=XG:domdomG×domdomGontodomdomGG:X×XontodomdomG
10 foeq3 domdomG=XG:X×XontodomdomGG:X×XontoX
11 9 10 bitrd domdomG=XG:domdomG×domdomGontodomdomGG:X×XontoX
12 11 biimpd domdomG=XG:domdomG×domdomGontodomdomGG:X×XontoX
13 5 12 mpcom G:domdomG×domdomGontodomdomGG:X×XontoX
14 3 13 syl GMagmaExIdG:X×XontoX