Metamath Proof Explorer


Theorem opidonOLD

Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis opidonOLD.1 X=domdomG
Assertion opidonOLD GMagmaExIdG:X×XontoX

Proof

Step Hyp Ref Expression
1 opidonOLD.1 X=domdomG
2 inss1 MagmaExIdMagma
3 2 sseli GMagmaExIdGMagma
4 1 ismgmOLD GMagmaGMagmaG:X×XX
5 4 ibi GMagmaG:X×XX
6 3 5 syl GMagmaExIdG:X×XX
7 inss2 MagmaExIdExId
8 7 sseli GMagmaExIdGExId
9 1 isexid GExIdGExIduXxXuGx=xxGu=x
10 9 biimpd GExIdGExIduXxXuGx=xxGu=x
11 8 8 10 sylc GMagmaExIduXxXuGx=xxGu=x
12 simpl uGx=xxGu=xuGx=x
13 12 ralimi xXuGx=xxGu=xxXuGx=x
14 oveq2 x=yuGx=uGy
15 id x=yx=y
16 14 15 eqeq12d x=yuGx=xuGy=y
17 16 rspcv yXxXuGx=xuGy=y
18 eqcom y=uGxuGx=y
19 14 eqeq1d x=yuGx=yuGy=y
20 18 19 bitrid x=yy=uGxuGy=y
21 20 rspcev yXuGy=yxXy=uGx
22 21 ex yXuGy=yxXy=uGx
23 17 22 syld yXxXuGx=xxXy=uGx
24 13 23 syl5 yXxXuGx=xxGu=xxXy=uGx
25 24 reximdv yXuXxXuGx=xxGu=xuXxXy=uGx
26 25 impcom uXxXuGx=xxGu=xyXuXxXy=uGx
27 26 ralrimiva uXxXuGx=xxGu=xyXuXxXy=uGx
28 11 27 syl GMagmaExIdyXuXxXy=uGx
29 foov G:X×XontoXG:X×XXyXuXxXy=uGx
30 6 28 29 sylanbrc GMagmaExIdG:X×XontoX