Metamath Proof Explorer


Theorem isexid2

Description: If G e. ( Magma i^i ExId ) , then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis isexid2.1 X=ranG
Assertion isexid2 GMagmaExIduXxXuGx=xxGu=x

Proof

Step Hyp Ref Expression
1 isexid2.1 X=ranG
2 rngopidOLD GMagmaExIdranG=domdomG
3 elin GMagmaExIdGMagmaGExId
4 eqid domdomG=domdomG
5 4 isexid GExIdGExIdudomdomGxdomdomGuGx=xxGu=x
6 5 ibi GExIdudomdomGxdomdomGuGx=xxGu=x
7 6 a1d GExIdX=domdomGudomdomGxdomdomGuGx=xxGu=x
8 7 adantl GMagmaGExIdX=domdomGudomdomGxdomdomGuGx=xxGu=x
9 3 8 sylbi GMagmaExIdX=domdomGudomdomGxdomdomGuGx=xxGu=x
10 eqeq2 ranG=domdomGX=ranGX=domdomG
11 raleq ranG=domdomGxranGuGx=xxGu=xxdomdomGuGx=xxGu=x
12 11 rexeqbi1dv ranG=domdomGuranGxranGuGx=xxGu=xudomdomGxdomdomGuGx=xxGu=x
13 10 12 imbi12d ranG=domdomGX=ranGuranGxranGuGx=xxGu=xX=domdomGudomdomGxdomdomGuGx=xxGu=x
14 9 13 imbitrrid ranG=domdomGGMagmaExIdX=ranGuranGxranGuGx=xxGu=x
15 2 14 mpcom GMagmaExIdX=ranGuranGxranGuGx=xxGu=x
16 15 com12 X=ranGGMagmaExIduranGxranGuGx=xxGu=x
17 raleq X=ranGxXuGx=xxGu=xxranGuGx=xxGu=x
18 17 rexeqbi1dv X=ranGuXxXuGx=xxGu=xuranGxranGuGx=xxGu=x
19 16 18 sylibrd X=ranGGMagmaExIduXxXuGx=xxGu=x
20 1 19 ax-mp GMagmaExIduXxXuGx=xxGu=x