Metamath Proof Explorer


Theorem isexid2

Description: If G e. ( Magma i^i ExId ) , then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis isexid2.1 X = ran G
Assertion isexid2 G Magma ExId u X x X u G x = x x G u = x

Proof

Step Hyp Ref Expression
1 isexid2.1 X = ran G
2 rngopidOLD G Magma ExId ran G = dom dom G
3 elin G Magma ExId G Magma G ExId
4 eqid dom dom G = dom dom G
5 4 isexid G ExId G ExId u dom dom G x dom dom G u G x = x x G u = x
6 5 ibi G ExId u dom dom G x dom dom G u G x = x x G u = x
7 6 a1d G ExId X = dom dom G u dom dom G x dom dom G u G x = x x G u = x
8 7 adantl G Magma G ExId X = dom dom G u dom dom G x dom dom G u G x = x x G u = x
9 3 8 sylbi G Magma ExId X = dom dom G u dom dom G x dom dom G u G x = x x G u = x
10 eqeq2 ran G = dom dom G X = ran G X = dom dom G
11 raleq ran G = dom dom G x ran G u G x = x x G u = x x dom dom G u G x = x x G u = x
12 11 rexeqbi1dv ran G = dom dom G u ran G x ran G u G x = x x G u = x u dom dom G x dom dom G u G x = x x G u = x
13 10 12 imbi12d ran G = dom dom G X = ran G u ran G x ran G u G x = x x G u = x X = dom dom G u dom dom G x dom dom G u G x = x x G u = x
14 9 13 syl5ibr ran G = dom dom G G Magma ExId X = ran G u ran G x ran G u G x = x x G u = x
15 2 14 mpcom G Magma ExId X = ran G u ran G x ran G u G x = x x G u = x
16 15 com12 X = ran G G Magma ExId u ran G x ran G u G x = x x G u = x
17 raleq X = ran G x X u G x = x x G u = x x ran G u G x = x x G u = x
18 17 rexeqbi1dv X = ran G u X x X u G x = x x G u = x u ran G x ran G u G x = x x G u = x
19 16 18 sylibrd X = ran G G Magma ExId u X x X u G x = x x G u = x
20 1 19 ax-mp G Magma ExId u X x X u G x = x x G u = x