Metamath Proof Explorer


Theorem exidu1

Description: Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypothesis exidu1.1 X = ran G
Assertion exidu1 G Magma ExId ∃! u X x X u G x = x x G u = x

Proof

Step Hyp Ref Expression
1 exidu1.1 X = ran G
2 1 isexid2 G Magma ExId u X x X u G x = x x G u = x
3 simpl u G x = x x G u = x u G x = x
4 3 ralimi x X u G x = x x G u = x x X u G x = x
5 oveq2 x = y u G x = u G y
6 id x = y x = y
7 5 6 eqeq12d x = y u G x = x u G y = y
8 7 rspcv y X x X u G x = x u G y = y
9 4 8 syl5 y X x X u G x = x x G u = x u G y = y
10 simpr y G x = x x G y = x x G y = x
11 10 ralimi x X y G x = x x G y = x x X x G y = x
12 oveq1 x = u x G y = u G y
13 id x = u x = u
14 12 13 eqeq12d x = u x G y = x u G y = u
15 14 rspcv u X x X x G y = x u G y = u
16 11 15 syl5 u X x X y G x = x x G y = x u G y = u
17 9 16 im2anan9r u X y X x X u G x = x x G u = x x X y G x = x x G y = x u G y = y u G y = u
18 eqtr2 u G y = y u G y = u y = u
19 18 equcomd u G y = y u G y = u u = y
20 17 19 syl6 u X y X x X u G x = x x G u = x x X y G x = x x G y = x u = y
21 20 rgen2 u X y X x X u G x = x x G u = x x X y G x = x x G y = x u = y
22 oveq1 u = y u G x = y G x
23 22 eqeq1d u = y u G x = x y G x = x
24 23 ovanraleqv u = y x X u G x = x x G u = x x X y G x = x x G y = x
25 24 reu4 ∃! u X x X u G x = x x G u = x u X x X u G x = x x G u = x u X y X x X u G x = x x G u = x x X y G x = x x G y = x u = y
26 2 21 25 sylanblrc G Magma ExId ∃! u X x X u G x = x x G u = x