Metamath Proof Explorer


Theorem oplecon1b

Description: Contraposition law for strict ordering in orthoposets. ( chsscon1 analog.) (Contributed by NM, 6-Nov-2011)

Ref Expression
Hypotheses opcon3.b B=BaseK
opcon3.l ˙=K
opcon3.o ˙=ocK
Assertion oplecon1b KOPXBYB˙X˙Y˙Y˙X

Proof

Step Hyp Ref Expression
1 opcon3.b B=BaseK
2 opcon3.l ˙=K
3 opcon3.o ˙=ocK
4 1 3 opoccl KOPXB˙XB
5 4 3adant3 KOPXBYB˙XB
6 1 2 3 oplecon3b KOP˙XBYB˙X˙Y˙Y˙˙˙X
7 5 6 syld3an2 KOPXBYB˙X˙Y˙Y˙˙˙X
8 1 3 opococ KOPXB˙˙X=X
9 8 3adant3 KOPXBYB˙˙X=X
10 9 breq2d KOPXBYB˙Y˙˙˙X˙Y˙X
11 7 10 bitrd KOPXBYB˙X˙Y˙Y˙X