Metamath Proof Explorer


Theorem opltn0

Description: A lattice element greater than zero is nonzero. TODO: is this needed? (Contributed by NM, 1-Jun-2012)

Ref Expression
Hypotheses opltne0.b B=BaseK
opltne0.s <˙=<K
opltne0.z 0˙=0.K
Assertion opltn0 KOPXB0˙<˙XX0˙

Proof

Step Hyp Ref Expression
1 opltne0.b B=BaseK
2 opltne0.s <˙=<K
3 opltne0.z 0˙=0.K
4 simpl KOPXBKOP
5 1 3 op0cl KOP0˙B
6 5 adantr KOPXB0˙B
7 simpr KOPXBXB
8 eqid K=K
9 8 2 pltval KOP0˙BXB0˙<˙X0˙KX0˙X
10 4 6 7 9 syl3anc KOPXB0˙<˙X0˙KX0˙X
11 necom X0˙0˙X
12 1 8 3 op0le KOPXB0˙KX
13 12 biantrurd KOPXB0˙X0˙KX0˙X
14 11 13 bitr2id KOPXB0˙KX0˙XX0˙
15 10 14 bitrd KOPXB0˙<˙XX0˙