Metamath Proof Explorer


Theorem opmpoismgm

Description: A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020)

Ref Expression
Hypotheses opmpoismgm.b B=BaseM
opmpoismgm.p +M=xB,yBC
opmpoismgm.n φB
opmpoismgm.c φxByBCB
Assertion opmpoismgm φMMgm

Proof

Step Hyp Ref Expression
1 opmpoismgm.b B=BaseM
2 opmpoismgm.p +M=xB,yBC
3 opmpoismgm.n φB
4 opmpoismgm.c φxByBCB
5 4 ralrimivva φxByBCB
6 5 adantr φaBbBxByBCB
7 simprl φaBbBaB
8 simprr φaBbBbB
9 eqid xB,yBC=xB,yBC
10 9 ovmpoelrn xByBCBaBbBaxB,yBCbB
11 6 7 8 10 syl3anc φaBbBaxB,yBCbB
12 11 ralrimivva φaBbBaxB,yBCbB
13 n0 BeeB
14 2 eqcomi xB,yBC=+M
15 1 14 ismgmn0 eBMMgmaBbBaxB,yBCbB
16 15 exlimiv eeBMMgmaBbBaxB,yBCbB
17 13 16 sylbi BMMgmaBbBaxB,yBCbB
18 3 17 syl φMMgmaBbBaxB,yBCbB
19 12 18 mpbird φMMgm