Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 14-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppchom.h | |
|
oppchom.o | |
||
Assertion | oppchomfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppchom.h | |
|
2 | oppchom.o | |
|
3 | homid | |
|
4 | slotsbhcdif | |
|
5 | 4 | simp3i | |
6 | 3 5 | setsnid | |
7 | 1 | fvexi | |
8 | 7 | tposex | |
9 | 3 | setsid | |
10 | 8 9 | mpan2 | |
11 | eqid | |
|
12 | eqid | |
|
13 | 11 1 12 2 | oppcval | |
14 | 13 | fveq2d | |
15 | 6 10 14 | 3eqtr4a | |
16 | tpos0 | |
|
17 | fvprc | |
|
18 | 1 17 | eqtrid | |
19 | 18 | tposeqd | |
20 | fvprc | |
|
21 | 2 20 | eqtrid | |
22 | 21 | fveq2d | |
23 | 3 | str0 | |
24 | 22 23 | eqtr4di | |
25 | 16 19 24 | 3eqtr4a | |
26 | 15 25 | pm2.61i | |