Metamath Proof Explorer


Theorem oppchomfval

Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 14-Oct-2024)

Ref Expression
Hypotheses oppchom.h H=HomC
oppchom.o O=oppCatC
Assertion oppchomfval tposH=HomO

Proof

Step Hyp Ref Expression
1 oppchom.h H=HomC
2 oppchom.o O=oppCatC
3 homid Hom=SlotHomndx
4 slotsbhcdif BasendxHomndxBasendxcompndxHomndxcompndx
5 4 simp3i Homndxcompndx
6 3 5 setsnid HomCsSetHomndxtposH=HomCsSetHomndxtposHsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
7 1 fvexi HV
8 7 tposex tposHV
9 3 setsid CVtposHVtposH=HomCsSetHomndxtposH
10 8 9 mpan2 CVtposH=HomCsSetHomndxtposH
11 eqid BaseC=BaseC
12 eqid compC=compC
13 11 1 12 2 oppcval CVO=CsSetHomndxtposHsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
14 13 fveq2d CVHomO=HomCsSetHomndxtposHsSetcompndxuBaseC×BaseC,zBaseCtposz2nducompC1stu
15 6 10 14 3eqtr4a CVtposH=HomO
16 tpos0 tpos=
17 fvprc ¬CVHomC=
18 1 17 eqtrid ¬CVH=
19 18 tposeqd ¬CVtposH=tpos
20 fvprc ¬CVoppCatC=
21 2 20 eqtrid ¬CVO=
22 21 fveq2d ¬CVHomO=Hom
23 3 str0 =Hom
24 22 23 eqtr4di ¬CVHomO=
25 16 19 24 3eqtr4a ¬CVtposH=HomO
26 15 25 pm2.61i tposH=HomO