Description: Commutativity rule for "opposite" Theorem 9.2 of Schwabhauser p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpg.p | |
|
hpg.d | |
||
hpg.i | |
||
hpg.o | |
||
opphl.l | |
||
opphl.d | |
||
opphl.g | |
||
oppcom.a | |
||
oppcom.b | |
||
oppcom.o | |
||
Assertion | oppcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | |
|
2 | hpg.d | |
|
3 | hpg.i | |
|
4 | hpg.o | |
|
5 | opphl.l | |
|
6 | opphl.d | |
|
7 | opphl.g | |
|
8 | oppcom.a | |
|
9 | oppcom.b | |
|
10 | oppcom.o | |
|
11 | 1 2 3 4 8 9 | islnopp | |
12 | 10 11 | mpbid | |
13 | 12 | simpld | |
14 | 13 | simprd | |
15 | 13 | simpld | |
16 | 12 | simprd | |
17 | 7 | ad2antrr | |
18 | 8 | ad2antrr | |
19 | 7 | adantr | |
20 | 6 | adantr | |
21 | simpr | |
|
22 | 1 5 3 19 20 21 | tglnpt | |
23 | 22 | adantr | |
24 | 9 | ad2antrr | |
25 | simpr | |
|
26 | 1 2 3 17 18 23 24 25 | tgbtwncom | |
27 | 7 | ad2antrr | |
28 | 9 | ad2antrr | |
29 | 22 | adantr | |
30 | 8 | ad2antrr | |
31 | simpr | |
|
32 | 1 2 3 27 28 29 30 31 | tgbtwncom | |
33 | 26 32 | impbida | |
34 | 33 | rexbidva | |
35 | 16 34 | mpbid | |
36 | 14 15 35 | jca31 | |
37 | 1 2 3 4 9 8 | islnopp | |
38 | 36 37 | mpbird | |