Metamath Proof Explorer


Theorem oppcom

Description: Commutativity rule for "opposite" Theorem 9.2 of Schwabhauser p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
oppcom.a φAP
oppcom.b φBP
oppcom.o φAOB
Assertion oppcom φBOA

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 oppcom.a φAP
9 oppcom.b φBP
10 oppcom.o φAOB
11 1 2 3 4 8 9 islnopp φAOB¬AD¬BDtDtAIB
12 10 11 mpbid φ¬AD¬BDtDtAIB
13 12 simpld φ¬AD¬BD
14 13 simprd φ¬BD
15 13 simpld φ¬AD
16 12 simprd φtDtAIB
17 7 ad2antrr φtDtAIBG𝒢Tarski
18 8 ad2antrr φtDtAIBAP
19 7 adantr φtDG𝒢Tarski
20 6 adantr φtDDranL
21 simpr φtDtD
22 1 5 3 19 20 21 tglnpt φtDtP
23 22 adantr φtDtAIBtP
24 9 ad2antrr φtDtAIBBP
25 simpr φtDtAIBtAIB
26 1 2 3 17 18 23 24 25 tgbtwncom φtDtAIBtBIA
27 7 ad2antrr φtDtBIAG𝒢Tarski
28 9 ad2antrr φtDtBIABP
29 22 adantr φtDtBIAtP
30 8 ad2antrr φtDtBIAAP
31 simpr φtDtBIAtBIA
32 1 2 3 27 28 29 30 31 tgbtwncom φtDtBIAtAIB
33 26 32 impbida φtDtAIBtBIA
34 33 rexbidva φtDtAIBtDtBIA
35 16 34 mpbid φtDtBIA
36 14 15 35 jca31 φ¬BD¬ADtDtBIA
37 1 2 3 4 9 8 islnopp φBOA¬BD¬ADtDtBIA
38 36 37 mpbird φBOA