Metamath Proof Explorer


Theorem oppff1o

Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses oppff1.o O = oppCat C
oppff1.p P = oppCat D
oppff1o.c φ C V
oppff1o.d φ D W
Assertion oppff1o Could not format assertion : No typesetting found for |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppff1.o O = oppCat C
2 oppff1.p P = oppCat D
3 oppff1o.c φ C V
4 oppff1o.d φ D W
5 1 2 oppff1 Could not format ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) : No typesetting found for |- ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) with typecode |-
6 5 a1i Could not format ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) ) with typecode |-
7 f1f Could not format ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) : No typesetting found for |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) with typecode |-
8 6 7 syl Could not format ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) with typecode |-
9 fveq2 Could not format ( g = ( oppFunc ` f ) -> ( ( oppFunc |` ( C Func D ) ) ` g ) = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) : No typesetting found for |- ( g = ( oppFunc ` f ) -> ( ( oppFunc |` ( C Func D ) ) ` g ) = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) with typecode |-
10 9 eqeq2d Could not format ( g = ( oppFunc ` f ) -> ( f = ( ( oppFunc |` ( C Func D ) ) ` g ) <-> f = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) ) : No typesetting found for |- ( g = ( oppFunc ` f ) -> ( f = ( ( oppFunc |` ( C Func D ) ) ` g ) <-> f = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) ) with typecode |-
11 3 adantr φ f O Func P C V
12 4 adantr φ f O Func P D W
13 simpr φ f O Func P f O Func P
14 1 2 11 12 13 2oppffunc Could not format ( ( ph /\ f e. ( O Func P ) ) -> ( oppFunc ` f ) e. ( C Func D ) ) : No typesetting found for |- ( ( ph /\ f e. ( O Func P ) ) -> ( oppFunc ` f ) e. ( C Func D ) ) with typecode |-
15 14 fvresd Could not format ( ( ph /\ f e. ( O Func P ) ) -> ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) = ( oppFunc ` ( oppFunc ` f ) ) ) : No typesetting found for |- ( ( ph /\ f e. ( O Func P ) ) -> ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) = ( oppFunc ` ( oppFunc ` f ) ) ) with typecode |-
16 relfunc Rel C Func D
17 eqid Could not format ( oppFunc ` f ) = ( oppFunc ` f ) : No typesetting found for |- ( oppFunc ` f ) = ( oppFunc ` f ) with typecode |-
18 14 16 17 2oppf Could not format ( ( ph /\ f e. ( O Func P ) ) -> ( oppFunc ` ( oppFunc ` f ) ) = f ) : No typesetting found for |- ( ( ph /\ f e. ( O Func P ) ) -> ( oppFunc ` ( oppFunc ` f ) ) = f ) with typecode |-
19 15 18 eqtr2d Could not format ( ( ph /\ f e. ( O Func P ) ) -> f = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) : No typesetting found for |- ( ( ph /\ f e. ( O Func P ) ) -> f = ( ( oppFunc |` ( C Func D ) ) ` ( oppFunc ` f ) ) ) with typecode |-
20 10 14 19 rspcedvdw Could not format ( ( ph /\ f e. ( O Func P ) ) -> E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) : No typesetting found for |- ( ( ph /\ f e. ( O Func P ) ) -> E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) with typecode |-
21 20 ralrimiva Could not format ( ph -> A. f e. ( O Func P ) E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) : No typesetting found for |- ( ph -> A. f e. ( O Func P ) E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) with typecode |-
22 dffo3 Could not format ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) <-> ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) /\ A. f e. ( O Func P ) E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) ) : No typesetting found for |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) <-> ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) /\ A. f e. ( O Func P ) E. g e. ( C Func D ) f = ( ( oppFunc |` ( C Func D ) ) ` g ) ) ) with typecode |-
23 8 21 22 sylanbrc Could not format ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) ) with typecode |-
24 df-f1o Could not format ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) <-> ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) /\ ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) ) ) : No typesetting found for |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) <-> ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) /\ ( oppFunc |` ( C Func D ) ) : ( C Func D ) -onto-> ( O Func P ) ) ) with typecode |-
25 6 23 24 sylanbrc Could not format ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) : No typesetting found for |- ( ph -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-onto-> ( O Func P ) ) with typecode |-