Metamath Proof Explorer


Theorem oprpiece1res1

Description: Restriction to the first part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010) (Proof shortened by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses oprpiece1.1 A
oprpiece1.2 B
oprpiece1.3 AB
oprpiece1.4 RV
oprpiece1.5 SV
oprpiece1.6 KAB
oprpiece1.7 F=xAB,yCifxKRS
oprpiece1.8 G=xAK,yCR
Assertion oprpiece1res1 FAK×C=G

Proof

Step Hyp Ref Expression
1 oprpiece1.1 A
2 oprpiece1.2 B
3 oprpiece1.3 AB
4 oprpiece1.4 RV
5 oprpiece1.5 SV
6 oprpiece1.6 KAB
7 oprpiece1.7 F=xAB,yCifxKRS
8 oprpiece1.8 G=xAK,yCR
9 1 rexri A*
10 2 rexri B*
11 lbicc2 A*B*ABAAB
12 9 10 3 11 mp3an AAB
13 iccss2 AABKABAKAB
14 12 6 13 mp2an AKAB
15 ssid CC
16 resmpo AKABCCxAB,yCifxKRSAK×C=xAK,yCifxKRS
17 14 15 16 mp2an xAB,yCifxKRSAK×C=xAK,yCifxKRS
18 7 reseq1i FAK×C=xAB,yCifxKRSAK×C
19 eliccxr KABK*
20 6 19 ax-mp K*
21 iccleub A*K*xAKxK
22 9 20 21 mp3an12 xAKxK
23 22 iftrued xAKifxKRS=R
24 23 adantr xAKyCifxKRS=R
25 24 mpoeq3ia xAK,yCifxKRS=xAK,yCR
26 8 25 eqtr4i G=xAK,yCifxKRS
27 17 18 26 3eqtr4i FAK×C=G