Metamath Proof Explorer


Theorem oprssov

Description: The value of a member of the domain of a subclass of an operation. (Contributed by NM, 23-Aug-2007)

Ref Expression
Assertion oprssov FunFGFnC×DGFACBDAFB=AGB

Proof

Step Hyp Ref Expression
1 ovres ACBDAFC×DB=AFB
2 1 adantl FunFGFnC×DGFACBDAFC×DB=AFB
3 fndm GFnC×DdomG=C×D
4 3 reseq2d GFnC×DFdomG=FC×D
5 4 3ad2ant2 FunFGFnC×DGFFdomG=FC×D
6 funssres FunFGFFdomG=G
7 6 3adant2 FunFGFnC×DGFFdomG=G
8 5 7 eqtr3d FunFGFnC×DGFFC×D=G
9 8 oveqd FunFGFnC×DGFAFC×DB=AGB
10 9 adantr FunFGFnC×DGFACBDAFC×DB=AGB
11 2 10 eqtr3d FunFGFnC×DGFACBDAFB=AGB