Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of TakeutiZaring p. 16. Note that C and D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opth1.1 | |
|
opth1.2 | |
||
Assertion | opth | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opth1.1 | |
|
2 | opth1.2 | |
|
3 | 1 2 | opth1 | |
4 | 1 2 | opi1 | |
5 | id | |
|
6 | 4 5 | eleqtrid | |
7 | oprcl | |
|
8 | 6 7 | syl | |
9 | 8 | simprd | |
10 | 3 | opeq1d | |
11 | 10 5 | eqtr3d | |
12 | 8 | simpld | |
13 | dfopg | |
|
14 | 12 2 13 | sylancl | |
15 | 11 14 | eqtr3d | |
16 | dfopg | |
|
17 | 8 16 | syl | |
18 | 15 17 | eqtr3d | |
19 | prex | |
|
20 | prex | |
|
21 | 19 20 | preqr2 | |
22 | 18 21 | syl | |
23 | preq2 | |
|
24 | 23 | eqeq2d | |
25 | eqeq2 | |
|
26 | 24 25 | imbi12d | |
27 | vex | |
|
28 | 2 27 | preqr2 | |
29 | 26 28 | vtoclg | |
30 | 9 22 29 | sylc | |
31 | 3 30 | jca | |
32 | opeq12 | |
|
33 | 31 32 | impbii | |