Metamath Proof Explorer


Theorem opth

Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of TakeutiZaring p. 16. Note that C and D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995)

Ref Expression
Hypotheses opth1.1 A V
opth1.2 B V
Assertion opth A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 opth1.1 A V
2 opth1.2 B V
3 1 2 opth1 A B = C D A = C
4 1 2 opi1 A A B
5 id A B = C D A B = C D
6 4 5 eleqtrid A B = C D A C D
7 oprcl A C D C V D V
8 6 7 syl A B = C D C V D V
9 8 simprd A B = C D D V
10 3 opeq1d A B = C D A B = C B
11 10 5 eqtr3d A B = C D C B = C D
12 8 simpld A B = C D C V
13 dfopg C V B V C B = C C B
14 12 2 13 sylancl A B = C D C B = C C B
15 11 14 eqtr3d A B = C D C D = C C B
16 dfopg C V D V C D = C C D
17 8 16 syl A B = C D C D = C C D
18 15 17 eqtr3d A B = C D C C B = C C D
19 prex C B V
20 prex C D V
21 19 20 preqr2 C C B = C C D C B = C D
22 18 21 syl A B = C D C B = C D
23 preq2 x = D C x = C D
24 23 eqeq2d x = D C B = C x C B = C D
25 eqeq2 x = D B = x B = D
26 24 25 imbi12d x = D C B = C x B = x C B = C D B = D
27 vex x V
28 2 27 preqr2 C B = C x B = x
29 26 28 vtoclg D V C B = C D B = D
30 9 22 29 sylc A B = C D B = D
31 3 30 jca A B = C D A = C B = D
32 opeq12 A = C B = D A B = C D
33 31 32 impbii A B = C D A = C B = D