Metamath Proof Explorer


Theorem opth

Description: The ordered pair theorem. If two ordered pairs are equal, their first elements are equal and their second elements are equal. Exercise 6 of TakeutiZaring p. 16. Note that C and D are not required to be sets due our specific ordered pair definition. (Contributed by NM, 28-May-1995)

Ref Expression
Hypotheses opth1.1 AV
opth1.2 BV
Assertion opth AB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 opth1.1 AV
2 opth1.2 BV
3 1 2 opth1 AB=CDA=C
4 1 2 opi1 AAB
5 id AB=CDAB=CD
6 4 5 eleqtrid AB=CDACD
7 oprcl ACDCVDV
8 6 7 syl AB=CDCVDV
9 8 simprd AB=CDDV
10 3 opeq1d AB=CDAB=CB
11 10 5 eqtr3d AB=CDCB=CD
12 8 simpld AB=CDCV
13 dfopg CVBVCB=CCB
14 12 2 13 sylancl AB=CDCB=CCB
15 11 14 eqtr3d AB=CDCD=CCB
16 dfopg CVDVCD=CCD
17 8 16 syl AB=CDCD=CCD
18 15 17 eqtr3d AB=CDCCB=CCD
19 prex CBV
20 prex CDV
21 19 20 preqr2 CCB=CCDCB=CD
22 18 21 syl AB=CDCB=CD
23 preq2 x=DCx=CD
24 23 eqeq2d x=DCB=CxCB=CD
25 eqeq2 x=DB=xB=D
26 24 25 imbi12d x=DCB=CxB=xCB=CDB=D
27 vex xV
28 2 27 preqr2 CB=CxB=x
29 26 28 vtoclg DVCB=CDB=D
30 9 22 29 sylc AB=CDB=D
31 3 30 jca AB=CDA=CB=D
32 opeq12 A=CB=DAB=CD
33 31 32 impbii AB=CDA=CB=D