Metamath Proof Explorer


Theorem opthg

Description: Ordered pair theorem. C and D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion opthg AVBWAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 opeq1 x=Axy=Ay
2 1 eqeq1d x=Axy=CDAy=CD
3 eqeq1 x=Ax=CA=C
4 3 anbi1d x=Ax=Cy=DA=Cy=D
5 2 4 bibi12d x=Axy=CDx=Cy=DAy=CDA=Cy=D
6 opeq2 y=BAy=AB
7 6 eqeq1d y=BAy=CDAB=CD
8 eqeq1 y=By=DB=D
9 8 anbi2d y=BA=Cy=DA=CB=D
10 7 9 bibi12d y=BAy=CDA=Cy=DAB=CDA=CB=D
11 vex xV
12 vex yV
13 11 12 opth xy=CDx=Cy=D
14 5 10 13 vtocl2g AVBWAB=CDA=CB=D